2,784 | 14 | 26 |
下载次数 | 被引频次 | 阅读次数 |
以农作物、生态观赏林、经济果树林为研究对象,从数据采集、处理、分析等方面对基于高光谱技术的病虫害监测方法进行梳理、总结,并提出高光谱技术应用在农林果木方面的不足和展望,为以后的植物分类识别、病虫害监测等研究提供参考。
Abstract:Taking crops,ecological ornamental forests and economic fruit forests as research objects,we sort out and summarize the monitoring methods of diseases and insect pests by hyperspectral technology from the aspects of data collection,data processing and data analysis. The shortcomings and prospects of the application of hyperspectral technology in agriculture,forestry,fruits and trees are pointed out,which can provide reference for future study on plant classification and identification,diseases and insect pests monitoring.
[1]刘冰,左溪冰,谭熊,等.高光谱影像分类的深度少样例学习方法[J].测绘学报,2020,49(10):1 331-1 342
[2]武复宇,王雪,丁建伟,等.高光谱遥感影像多级联森林深度网络分类算法[J].遥感学报,2020,24(4):439-453
[3] Bach H,Mauser W. Improvements of Plant Parameter Estimations with Hyperspectral Data Compared to Multispectral Data[C]. Satellite Remote SensingⅢ,Taormina,Italy,1997
[4]王彦翔,张艳,杨成娅,等.基于深度学习的农作物病害图像识别技术进展[J].浙江农业学报,2019,31(4):669-676
[5] Pandey P,Ge Y,Stoerger V,et al. High Throughput in vivo Analysis of Plant Leaf Chemical Properties Using Hyperspectral Imaging[J]. Frontiers in Plant Science,2017,8,doi:10. 3389/fpls. 2017. 01348
[6] Ye X J,Abe S,Zhang S H. Estimation and Mapping of Nitrogen Content in Apple Trees at Leaf and Canopy Levels Using Hyperspectral Imaging[J]. Precision Agriculture,2020,21(1):198-225
[7] Al Bashish D,Braik M,Bani-Ahmad S. A Framework for Detection and Classification of Plant Leaf and Stem Diseases[C]. 2010 International Conference on Signal and Image Processing,Chennai,India,2010
[8] Song K,Liu Z K,Su H,et al. A Research of Maize Disease Image Recognition of Corn Based on BP Networks[C]. 2011 Third International Conference on Measuring Technology and Mechatronics Automation,Shanghai,China,2011
[9] Raza S E A,Prince G,Clarkson J P,et al. Automatic Detection of Diseased Tomato Plants Using Thermal and Stereo Visible Light Images[J]. PLoS One,2015,10(4):e0123262
[10] Mohanty S P,Hughes D P,SalathéM. Using Deep Learning for Image-Based Plant Disease Detection[J].Frontiers in Plant Science, 2016, 7,doi:10. 3389/fpls. 2016. 01419
[11] Zhao Y R,Li X L,Yu K Q,et al. Hyperspectral Imaging for Determining Pigment Contents in Cucumber Leaves in Response to Angular Leaf Spot Disease[J]. Scientific Reports,2016,6,doi:10. 1038/srep27790
[12] Xu J,Miao T,Zhou Y C,et al. Early Identification of Curvularia Lunata Based on Hyperspectral Imaging[J].Journal of Optical Technology,2018,85(7):432-436
[13] Ramcharan A,Baranowski K,McCloskey P,et al.Deep Learning for Image-Based Cassava Disease Detection[J]. Frontiers in Plant Science,2017,8:1852
[14] Zhu H Y,Chu B Q,Zhang C,et al. Hyperspectral Imaging for Presymptomatic Detection of Tobacco Disease with Successive Projections Algorithm and Machine-Learning Classifiers[J]. Scientific Reports,2017,7,10. 1038/s41598-017-04501-2
[15]黄双萍,孙超,齐龙,等.基于深度卷积神经网络的水稻穗瘟病检测方法[J].农业工程学报,2017,33(20):169-176
[16]马惠玲,王若琳,蔡骋,等.基于高光谱成像的苹果品种快速鉴别[J].农业机械学报,2017,48(4):305-312
[17] Wang Y J,Hu X,Hou Z W,et al. Discrimination of Nitrogen Fertilizer Levels of Tea Plant(Camellia Sinensis)Based on Hyperspectral Imaging[J]. Journal of the Science of Food and Agriculture, 2018, 98(12):4 659-4 664
[18]张善文,谢泽奇,张晴晴.卷积神经网络在黄瓜叶部病害识别中的应用[J].江苏农业学报,2018,34(1):56-61
[19]刘阗宇,冯全,杨森.基于卷积神经网络的葡萄叶片病害检测方法[J].东北农业大学学报,2018,49(3):73-83
[20]甘海明,岳学军,洪添胜,等.基于深度学习的龙眼叶片叶绿素含量预测的高光谱反演模型[J].华南农业大学学报,2018,39(3):102-110
[21] Xiong J T,Lin R,Bu R B,et al. A Micro-Damage Detection Method of Litchi Fruit Using Hyperspectral Imaging Technology[J]. Sensors,2018,18(3):700
[22] Nagasubramanian K,Jones S,Singh A K,et al. Explaining Hyperspectral Imaging Based Plant Disease Identification:3D CNN and Saliency Maps[EB/OL].[2018-04-24]. https://arxiv. org/pdf/1804. 08831. pdf
[23] Lawrence R,Labus M. Early Detection of DouglasFir Beetle Infestation with Subcanopy Resolution Hyperspectral Imagery[J]. Western Journal of Applied Forestry,2003,18(3):202-206
[24]伍南,刘君昂,周国英,等.基于高光谱数据的病害胁迫下杉木冠层色素含量估算研究[J].中国农学通报,2012,28(1):73-79
[25]李军,杨秋珍,黄敬峰,等.杨扇舟蛾和杨小舟蛾危害对意大利214杨高光谱特征的影响[J].北京林业大学学报,2007,29(6):148-155
[26]许章华,刘健,余坤勇,等.松毛虫危害马尾松光谱特征分析与等级检测[J].光谱学与光谱分析,2013,33(2):428-433
[27]彭隆赞,金时超,孟凡凡,等.马尾松毛虫危害程度的高光谱监测方法[J].湖北林业科技,2017,46(3):1-6
[28]王晓堂.基于高光谱的松萎蔫病动态变化的研究[D].南京:南京林业大学,2011
[29]徐华潮,骆有庆,张廷廷,等.松材线虫自然侵染后松树不同感病阶段针叶光谱特征变化[J].光谱学与光谱分析,2011,31(5):1 352-1 356
[30]杜华强,葛宏立,范文义,等.分形理论在马尾松松材线虫病发病早期高光谱探测中的应用[J].林业科学,2009,45(6):68-76
[31]王震,张晓丽,安树杰.松材线虫病危害的马尾松林木光谱特征分析[J].遥感技术与应用,2007,22(3):367-370
[32]黄明祥,龚建华,李顺,等.松材线虫病害高光谱时序与敏感特征研究[J].遥感技术与应用,2012,27(6):954-960
[33]石韧,刘礼,高娜.用高光谱数据反演健康与病害落叶松冠层光合色素含量的模型研究:基于2005年吉林省敦化、和龙两市落叶松冠层采样测量数据[J].遥感技术与应用,2008,23(3):264-271
[34]白雪琪,张晓丽,张凝,等.基于高光谱遥感的油松毛虫危害程度监测模型[J].北京林业大学学报,2016,38(11):16-22
[35] Hernández-Clemente R,North P R J,Hornero A,et al. Assessing the Effects of Forest Health on Sun-Induced Chlorophyll Fluorescence Using the FluorFLIGHT 3-D Radiative Transfer Model to Account for Forest Structure[J]. Remote Sensing of Environment,2017,193:165-179
[36] Lin H,Yan E P,Wang G X,et al. Analysis of Hyperspectral Bands for the Health Diagnosis of Tree Species[C]. 2014 Third International Workshop on Earth Observation and Remote Sensing Applications(EORSA),Changsha,China,2014
[37] Calderón R,Navas-Cortés J A,Lucena C,et al. HighResolution Airborne Hyperspectral and Thermal Imagery for Early Detection of Verticillium Wilt of Olive Using Fluorescence,Temperature and Narrow-Band Spectral Indices[J]. Remote Sensing of Environment,2013,139:231-245
[38] Zarco-Tejada P J,Camino C,Beck P S A,et al. Previsual Symptoms of Xylella fastidiosa Infection Revealed in Spectral Plant-Trait Alterations[J]. Nature Plants,2018,4(7):432-439
[39] Shafr H Z M,Hamdan N. Hyperspectral Imagery for Mapping Disease Infection in Oil Palm Plantation Using Vegetation Indices and Red Edge Techniques[J].American Journal of Applied Sciences,2009,6(6):1 031-1 035
[40] Wang G,Sun Y,Wang J X. Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning[J]. Computational Intelligence and Neuroscience,2017,doi:10. 1155/2017/2917536
[41]胡荣明,魏曼,竞霞,等.基于成像高光谱的苹果树叶片病害区域提取方法研究[J].西北农林科技大学学报(自然科学版),2012,40(8):95-99
[42] Nouri M,Gorretta N,Vaysse P,et al. Near Infrared Hyperspectral Dataset of Healthy and Infected Apple Tree Leaves Images for the Early Detection of Apple Scab Disease[J]. Data in Brief,2018,16:967-971
[43] Fang X Y,Zhu X C,Wang Z Y,et al. Hyperspectral Characteristics of Apple Leaves Based on Different Disease Stress[J]. Remote Sensing Science,2014,2(3):14-21
[44] Bagheri N,Mohamadi-Monavar H,Azizi A,et al. Detection of Fire Blight Disease in Pear Trees by Hyperspectral Data[J]. European Journal of Remote Sensing,2018,51(1):1-10
[45]邢东兴,常庆瑞.基于光谱反射率的果树病虫害级别定量化测评:以红富士苹果树黄叶病害、红蜘蛛虫害为例[J].西北农林科技大学学报(自然科学版),2009,37(11):143-148
[46]梅慧兰,邓小玲,洪添胜,等.柑橘黄龙病高光谱早期鉴别及病情分级[J].农业工程学报,2014,30(9):140-147
[47] Pourreza A,Lee W S,Ehsani R,et al. An Optimum Method for Real-Time In-Field Detection of Huanglongbing Disease Using a Vision Sensor[J]. Computers and Electronics in Agriculture,2015,110:221-232
[48]孙旭东,刘燕德,肖怀春,等.正常、缺素和黄龙病柑桔叶片高光谱成像快速诊断[J].光谱学与光谱分析,2017,37(2):551-556
[49]李震,洪添胜,倪慧娜,等.用高光谱成像技术检测柑橘红蜘蛛为害叶片的色素含量[J].农业工程学报,2014,30(6):124-130
[50] Wang K J,Guo D M,Zhang Y,et al. Detection of Huanglongbing(Citrus Greening)Based on Hyperspectral Image Analysis and PCR[J]. Frontiers of Agricultural Science and Engineering,2019,6(2):172-180
[51] Ochoa D,Cevallos J,Vargas G,et al. Hyperspectral Imaging System for Disease Scanning on Banana Plants[C]. SPIE Commercial+Scientific Sensing and Imaging,Baltimore,Maryland,USA,2016
[52] Mokhele T A,Ahmed F,Conlong D E. Detection of Sugarcane African Stalk Borer Eldana Saccharina Walker(Lepidoptera:Pyralidae)Using Hyperspectral Remote Sensing(Spectroradiometry)[J]. Sugar Cane International,2009,27(6):237-244
[53]张建伟,陈允杰.高光谱图像分类方法综述[J].南京信息工程大学学报,2020,12(1):89-100
[54]职露,余旭初,邹滨,等.多层级二值模式的高光谱影像空-谱分类[J].武汉大学学报·信息科学版,2019,44(11):1 659-1 666
基本信息:
DOI:10.14188/j.2095-6045.2020588
中图分类号:S43
引用信息:
[1]马书英,郭增长,王双亭等.高光谱技术监测植物病虫害方法研究进展[J].测绘地理信息,2021,46(05):46-51.DOI:10.14188/j.2095-6045.2020588.
基金信息:
国家自然科学基金(41871333); 智慧中原协同创新中心项目(2016A002)