nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 03, v.49 14-18
基于GNSS-IR技术的南极海冰积雪深度反演研究
基金项目(Foundation): 国家重点研发计划(2017YFA0603104); 国家自然科学基金(41730102,41531069)
邮箱(Email): zskai@whu.edu.cn;
DOI: 10.14188/j.2095-6045.2022151
摘要:

南极海冰的生长消融与全球气候变化密切相关,而海冰上覆盖的积雪会对海冰的生长消融产生较大的影响。利用南极中山站附近海冰上的GPS数据,采用GNSS-IR(GNSS interferometric reflectometry)技术对海冰上覆积雪深度进行反演。首先,采用最小二乘谐波分析(least-squares harmonic estimation, LS-HE)方法提取反射信号的主波峰,计算反射面到天线相位中心的距离;其次,采用DBSCAN(density-based spatial clustering of applications with noise)聚类算法对反演结果进行质量控制;最后,利用现场实测雪深数据对反演结果进行了验证,平均偏差为-0.01 m,RMSE为0.012 m,表明GNSS-IR技术能够有效反演海冰表面积雪深度。

Abstract:

The growth and melting of Antarctic sea ice are closely related to global environmental changes, and the snow covered on the sea ice will have a large impact on the growth of sea ice. In this paper,GNSS-IR is used to analyze GPS data on sea ice near Zhongshan Station in Antarctica in order to invert the depth of snow overlying the sea ice. First, the leastsquares harmonic estimation method is used to extract the main wave peak of the reflected signal, which is used to calculate the distance from the reflecting surface to the antenna phase center. Then, the DBSCAN clustering algorithm is used to quality control the inversion results. Finally, the inversion results are verified by the actual snow depth data in the field. The average deviation after clustering is about-0. 01 m, and the RMSE is about 0. 012 m, indicating that the GNSS-IR technique can effectively invert the snow depth on the surface of sea ice.

参考文献

[1] Parkinson C L, Cavalieri D J. Antarctic Sea Ice Variability and Trends, 1979—2010[J]. The Cryosphere,2012, 6(4):871-880

[2] Massom R A, Stammerjohn S E. Antarctic Sea Ice Change and Variability-Physical and Ecological Implications[J]. Polar Science, 2010, 4(2):149-186

[3]徐正鹏,张全,牛小骥. GNSS单点解算用于组合导航性能分析[J].测绘地理信息,2019, 44(1):32-35

[4]陈锐志,王磊,李德仁,等.导航与遥感技术融合综述[J].测绘学报,2019, 48(12):1 507-1 522

[5]金双根,张勤耘,钱晓东.全球导航卫星系统反射测量(GNSS+R)最新进展与应用前景[J].测绘学报,2017, 46(10):1 389-1 398

[6] Martin-Neira M. A Passive Reflectometry and Interferometry System(PARIS):Application to Ocean Altimetry[J]. ESA Journal, 1993, 17(4):331-355

[7]万玮,李黄,洪阳,等. GNSS-R遥感观测模式及陆面应用[J].遥感学报,2015, 19(6):882-893

[8] Larson K M, Gutmann E D, Zavorotny V U, et al.Can We Measure Snow Depth with GPS Receivers?[J]. Geophysical Research Letters, 2009, 36(17):L17502

[9] Zavorotny V U, Larson K M, Braun J J, et al. A Physical Model for GPS Multipath Caused by Land Reflections:Toward Bare Soil Moisture Retrievals[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2009, 3(1):100-110

[10] Small E E, Larson K M, Braun J J. Sensing Vegetation Growth with Reflected GPS Signals[J]. Geophysical Research Letters, 2010, 37(12):1-5

[11]王笑蕾,何秀凤,陈殊,等.地基GNSS-IR风速反演原理及方法初探[J].测绘学报,2021,50(10):1 298-1 307

[12] Ozeki M, Heki K. GPS Snow Depth Meter with Geometry-Free Linear Combinations of Carrier Phases[J].Journal of Geodesy, 2012, 86(3):209-219

[13] Yu K, Ban W, Zhang X, et al. Snow Depth Estimation Based on Multipath Phase Combination of GPS Triple-Frequency Signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9):5 100-5 109

[14] Yu K, Li Y, Chang X. Snow Depth Estimation Based on Combination of Pseudorange and Carrier Phase of GNSS Dual-Frequency Signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(3):1 817-1 828

[15] Zhang S, Wang X, Zhang Q. Avoiding Errors Attributable To Topography In GPS-Ir Snow Depth Retrievals[J]. Advances in Space Research, 2017, 59(6):1 663-1 669

[16] Zhang Z, Guo F, Zhang X. Triple-Frequency MultiGNSS Reflectometry Snow Depth Retrieval by Using Clustering and Normalization Algorithm to Compensate Terrain Variation[J]. GPS Solutions, 2020, 24(2):1-18

[17] Larson K M, Wahr J, Munneke P K. Constraints on Snow Accumulation and Firn Density in Greenland Using GPS Receivers[J]. Journal of Glaciology, 2015, 61(225):101-114

[18] SheanD E, ChristiansonK, LarsonK M, et al. GPSDerived Estimates of Surface Mass Balance and Ocean-Induced Basal Melt for Pine Island Glacier Ice Shelf, Antarctica[J]. The Cryosphere, 2017, 11(6):2 655-2 674

[19]王泽民,刘智康,安家春,等.基于GPS和北斗信噪比观测值的雪深反演及其误差分析[J].测绘学报,2018, 47(1):8-16

[20]刘智康,安家春,冯鱼,等.基于GNSS-R技术的北极黄河站雪深反演研究[J].华东交通大学学报,2016,33(5):81-86

[21] An J, Deng P, Zhang B, et al. Snow Depth Variations in Svalbard Derived from GNSS Interferometric Reflectometry[J]. Remote Sensing, 2020, 12(20):3352

[22]章永来,周耀鉴.聚类算法综述[J].计算机应用,2019, 39(7):1 869-1 882

[23] Ester M, Kriegel H P, Sander J, et al. A DensityBased Algorithm for Discovering Clusters in Large Spatial Databases with Noise[J]. KDD, 1996, 96(34):226-231

[24] Roesler C, Larson K M. Software Tools for GNSS Interferometric Reflectometry(GNSS-IR)[J]. GPS Solutions, 2018, 22(3):1-10

[25]雷瑞波.冰层热力学生消过程现场观测和关键参数研究[D].大连:大连理工大学,2009

基本信息:

DOI:10.14188/j.2095-6045.2022151

中图分类号:P715.7;P941.61

引用信息:

[1]曾棋,张胜凯,龚力等.基于GNSS-IR技术的南极海冰积雪深度反演研究[J].测绘地理信息,2024,49(03):14-18.DOI:10.14188/j.2095-6045.2022151.

基金信息:

国家重点研发计划(2017YFA0603104); 国家自然科学基金(41730102,41531069)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索