VLDMS:面向可视化的海量激光点云分布式管理方案VLDMS: A Visualization-Oriented Distributed Management Scheme for Massive Laser Point Clouds
庞兆星,关雪峰,徐清杨,吴华意
摘要(Abstract):
现有点云存储方案无法有效支持大规模场景下海量激光点云的高效可视化,存在LOD(level of detail)构建时间长、查询调度效率低等问题。为此,提出了一种面向可视化的海量激光点云分布式管理方案VLDMS(visualization-oriented distributed management scheme)。该方案首先设计了Grid-KDBTree结构实现数据均衡分区,基于Spark实现点云的分布式LOD构建,同时基于HBase设计了点云多层级存储模型和相应的视锥体查询算法。实验证明,该方案能实现海量点云数据的LOD快速构建和视锥体高效查询,且随数据集增大该方案表现出良好的扩展性。
关键词(KeyWords): 激光点云;分布式;LOD;多层级存储;视锥体查询
基金项目(Foundation): 湖北省科技重大专项(2020AAA004)
作者(Author): 庞兆星,关雪峰,徐清杨,吴华意
DOI: 10.14188/j.2095-6045.2021763
参考文献(References):
- [1]闫利,胡晓斌,谢洪.车载LiDAR海量点云数据管理与可视化研究[J].武汉大学学报(信息科学版),2017, 42(8):1 131-1 136
- [2] Rusinkiewicz S, Levoy M. QSplat:A Multi-resolution Point Rendering System for Large Meshes[C].Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, New York,United States, 2000
- [3] Gobbetti E, Marton F. Layered Point Clouds:A Simple and Efficient Multiresolution Structure for Distributing and Rendering Gigantic Point-Sampled Models[J].Computers&Graphics, 2004, 28(6):815-826
- [4] Richter R, Discher S, Dllner J. Out-of-Core Visualization of Classified 3D Point Clouds[M]. 3D Geoinformation Science, Cham, Switzerland:Springer, 2015
- [5] Goswami P, Erol F, Mukhi R, et al. An Efficient Multi-resolution Framework for High Quality Interactive Rendering of Massive Point Clouds Using Multiway Kd-Trees[J]. The Visual Computer, 2013, 29(1):69-83
- [6] Deibe D, Amor M, Doallo R. Supporting Multi-resolution Out-of-Core Rendering of Massive LiDAR Point Clouds Through Non-redundant Data Structures[J].International Journal of Geographical Information Science, 2019, 33(3):593-617
- [7] Virtanen J P, Daniel S, Turppa T, et al. Interactive Dense Point Clouds in a Game Engine[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020,163:375-389
- [8] Martinez-Rubi O, Verhoeven S, van Meersbergen M,et al. Taming the Beast:Free and Open-Source Massive Point Cloud Web Visualization[C]. Capturing Reality Forum 2015, Salzburg, Austria, 2015
- [9] Schütz M. Potree:Rendering Large Point Clouds in Web Browsers[D]. Vienna:TU Wien, 2015
- [10] Gong J, Zhu Q, Zhong R, et al. An Efficient Point Cloud Management Method Based on a 3D R-tree[J].Photogrammetric Engineering&Remote Sensing,2012, 78(4):373-381
- [11] Wang Y, Gui Z, Wu H, et al. Optimizing and Accelerating Space-Time Ripley’s K Function Based on Apache Spark for Distributed Spatiotemporal Point Pattern Analysis[J]. Future Generation Computer Systems, 2020, 105:96-118
- [12] Schtz M, Krsl K, Wimmer M. Real-Time Continuous Level of Detail Rendering of Point Clouds[C]. 2019IEEE Conference on Virtual Reality and 3D User Interfaces(VR), Osaka, Japan, 2019
- [13] El-Mahgary S, Virtanen J P, Hyypp H. A Simple Semantic-Based Data Storage Layout for Querying Point Clouds[J]. ISPRS International Journal of Geo-Information, 2020, 9(2):72
- [14] van Oosterom P, Martinez-Rubi O, Ivanova M, et al.Massive Point Cloud Data Management:Design, Implementation and Execution of a Point Cloud Benchmark[J]. Computers&Graphics, 2015, 49:92-125
- [15] Cura R, Perret J, Paparoditis N. A Scalable and MultiPurpose Point Cloud Server(PCS)for Easier And Faster Point Cloud Data Management and Processing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 127:39-56
- [16] Martinez-Rubi O, van Oosterom P, Gon Alves R, et al. Benchmarking and Improving Point Cloud Data Management in Monet DB[J]. Sigspatial Special,2015, 6(2):11-18
- [17] Vo A V, Konda N, Chauhan N, et al. Lessons Learned with Laser Scanning Point Cloud Management in Hadoop HBase[C]. Workshop of the European Group for Intelligent Computing in Engineering,Cham, Switzerland, 2018
- [18] Paji?V, Govedarica M, Amovi?M. Model of Point Cloud Data Management System in Big Data Paradigm[J]. ISPRS International Journal of Geo-Information,2018, 7(7):265
- [19] Deibe D, Amor M, Doallo R. Big Data Storage Technologies:A Case Study for Web-Based LiDAR Visualization[C]. 2018 IEEE International Conference on Big Data(Big Data), Seattle, WA, USA, 2018
- [20] Ahmed E, Louai A, Mohamed M. Spatial Partitioning Techniques in Spatial Hadoop[J]. Proceedings of the VLDB Endowment, 2015, 8(12):1 602-1 605