基于多因子加权的遥感制图最佳波段组合分析Multi-factor Weighting Optimal Band Combination Analysis for Remote Sensing Mapping
毛玉君;李志伟;沈焕锋;苗静;
摘要(Abstract):
遥感影像最佳波段组合的研究对遥感信息提取与专题制图具有重要意义。以Landsat-8影像为例,提出了多因子加权的遥感制图最佳波段组合评价方法,分别从全局加权与场景加权的角度,对长江经济带全域及城市、水体、植被典型场景进行最佳波段组合分析,并通过评估不同波段组合影像的土地覆盖分类精度进行结果验证。结果表明B6-B5-B4进行RGB彩色合成是适宜长江经济带区域Landsat-8影像遥感制图的最佳波段组合,在城市、水体、植被分场景下保证了较高的土地覆盖分类精度,同NASA(national aeronautics and space administration)的Landsat ARD(analysis ready data)产品展示采用的波段组合方案一致,验证了实验结论的可靠性,为大区域遥感制图中影像波段组合的优选提供决策依据。
关键词(KeyWords): 遥感制图;Landsat-8影像;波段组合;多因子加权;长江经济带
基金项目(Foundation): 中央高校基本科研业务费专项资金项目(2042021KF0078)
作者(Authors): 毛玉君;李志伟;沈焕锋;苗静;
DOI: 10.14188/j.2095-6045.2022169
参考文献(References):
- [1]童威,郎丰铠.武汉市近20年土地利用/覆被变化遥感监测与分析[J].测绘地理信息,2021,46(5):83-87
- [2]宋英强,杨联安,许婧婷,等.基于Landsat-8卫星OLI遥感影像和AdaBoost算法的水体信息提取[J].测绘地理信息,2017,42(3):44-47
- [3]颜凤芹,于灵雪,杨朝斌,等.基于Landsat 8影像的湿地信息提取最佳波段组合[J].地球环境学报,2014,5(5):339-343
- [4]谢馨娴,岳彩荣.多特征组合的TM影像EnMap-Box土地利用分类[J].测绘地理信息,2019,44(3):109-112
- [5] Dwivedi R S,Rao B R M. The selection of the Best Possible Landsat TM Band Combination for Delineating Salt-Affected Soils[J]. International Journal of Remote Sensing,1992,13(11):2 051-2 058
- [6]李秀梅,袁承志,李月洋.渤海湾海岸带遥感监测及时空变化[J].国土资源遥感,2013,25(2):156-163
- [7]王莉,陈龙乾,袁林山,等.基于多时像TM/ETM+影像的兖州市土地利用/覆盖变化[J].测绘科学,2009,34(3):171-174
- [8]郭力娜,李帅,张梦华,等.最佳波段组合的城市土地利用类型提取[J].测绘科学,2019,44(8):161-167
- [9] Yu Zhiqi,Di Liping,Yang Ruixing,et al. Selection of Landsat 8 OLI Band Combinations for Land Use and Land Cover Classification[C]. 2019 8th International Conference on Agro-Geoinformatics(Agro-Geoinformatics),Istanbul,Turkey,2019
- [10] Elhag M. Consideration of Landsat-8 Spectral Band Combination in Typical Mediterranean Forest Classification in Halkidiki,Greece[J]. Open Geosciences,2017,9(1):468-479
- [11]赵无双.长江经济带遥感影像制图应用与分析[D].武汉:武汉大学,2020
- [12] Price J C. An Approach for Analysis of Reflectance Spectra[J]. Remote Sensing of Environment,1998,64(3):316-330
- [13] Shannon C E. A Mathematical Theory of Communication[J]. ACM Sigmobile Mobile Computing and Communications Review,2001,5(1):3-55
- [14] O’brien R M. A Caution Regarding Rules of Thumb for Variance Inflation Factors[J]. Quality&Quantity,2007,41(5):673-690
- [15] Chavez P S. Statistical Method for Selecting Landsat MSS Ratios[J]. Journal of Applied Photographic Engineering,1982,8(1):23-30
- [16] Psilovikos A, Elhag M. Forecasting of Remotely Sensed Daily Evapotranspiration Data over Nile Delta Region, Egypt[J]. Water Resources Management,2013,27(12):4 115-4 130
- [17] Sheffield C. Selecting Band Combinations from Multi Spectral Data[J]. Photogrammetric Engineering and Remote Sensing,1985,58(6):681-687
- [18]陈军,陈利军,李然,等.基于GlobeLand30的全球城乡建设用地空间分布与变化统计分析[J].测绘学报,2015,44(11):1 181-1 188
- [19] Vittinghoff E,Glidden D V,Shiboski S C,et al. Regression Methods in Biostatistics[M]. Boston:Springer,2012
- [20] Butler K. Band Combinations for Landsat 8[EB/OL].(2013-07-24)[2022-02-22]. https://www. esri. com/arcgis-blog/products/product/imagery/bandcombinations-for-landsat-8/
- [21] Potapov P,Hansen M C,Kommareddy I,et al. Landsat Analysis Ready Data for Global Land Cover and Land Cover Change Mapping[J]. Remote Sensing,2020,12(3):426
- [22] Gong Peng,Liu Han,Zhang Meinan,et al. Stable Classification with Limited Sample:Transferring a 30 m Resolution Sample Set Collected in 2015 to Mapping10 m Resolution Global Land Cover in 2017[J]. Science Bulletin,2019,64(6):370-373
- [23] Zhang Xiao, Liu Liangyun, Chen Xidong, et al.GLC_FCS30:Global Land-Cover Product with Fine Classification System at 30 m Using Time-Series Landsat Imagery[J]. Earth System Science Data,2021,13(6):2 753-2 776
- [24] Yang Jie,Huang Xin. The 30 m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019[J]. Earth System Science Data,2021,13(8):3 907-3 925
- [25] Beauchemin M,Fung K O B. On Statistical Band Selection for Image Visualization[J]. Photogrammetric Engineering and Remote Sensing, 2001, 67(5):571-574