基于智能手机的行人路网坡度属性检测Slope Attribute Detection of Pedestrian Network Using Smartphones
雷霞;周宝定;
摘要(Abstract):
由于现有行人路网的基础数据中缺失属性信息,造成行人导航无法满足个性化需求,影响了行人出行的舒适度与安全性。将路网分为平路与坡路两类,提出了一种基于智能手机的行人路网坡度属性检测方法。首先,基于智能手机传感器数据,采用机器学习算法实现对坡度属性的检测。其次,通过数据融合与地图匹配,得到带有属性信息的行人路网数据。最后,对该数据投票与修正并进行可视化。方法最终达到了97.3%的属性检测精度,表明了本文方法的有效性。所得路网数据可为个性化导航提供数据基础。
关键词(KeyWords): 行人路网;属性检测;机器学习;智能手机
基金项目(Foundation): 国家自然科学基金(41701519);; 深圳市科技计划项目(JCYJ20180305125058727);; 广东省自然科学基金面上项目(2019A1515011910)
作者(Authors): 雷霞;周宝定;
DOI: 10.14188/j.2095-6045.2020214
参考文献(References):
- [1] Gawad S M A,Mougy A E,El-Meligy M A. Dynamic Mapping of Road Conditions Using Smartphone Sensors and Machine Learning Techniques[C]. 2016IEEE 84th Vehicular Technology Conference(VTCFall),Montreal,QC,2016
- [2] Congwei D,Masayuki I,Yoshito T B,et al. A Framework for Pedestrian Comfort Navigation Using Multimodal Environmental Sensors[J]. Pervasive and Mobile Computing,2013,9(3):421-436
- [3] Thorsten V,Weber G. Route Checkr:Personalized Multicriteria Routing for Mobility Impaired Pedestrians[C]. The 10th International ACM Sigaccess Conference on Computers and Accessibility,Halifax,Nova Scotia,Canada,2008
- [4] Ding D,Parmanto B,Karimi H A,et al. Design Considerations for a Personalized Wheelchair Navigation System[C]. The 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,Lyon,France,2007
- [5] John S,Hahmann S,Rousell A,et al. Deriving Incline Values for Street Networks from Voluntarily Collected GPS Traces[J]. Cartography and Geographic Information Science,2017,44(2):152-169
- [6] Menkens C,Sussmann J,Breitsameter E,et al. Easy Wheel—A Mobile Social Navigation and Support System for Wheelchair Users[C]. 2011 Eighth International Conference on Information Technology:New Generations,Las Vegas,NV,USA,2011
- [7]周宝定,李清泉,毛庆洲,等.用户行为感知辅助的室内行人定位[J].武汉大学学报·信息科学版,2014,39(6):719-723
- [8]李清泉,周宝定,马威,等. GIS辅助的室内定位技术研究进展[J].测绘学报,2019,48(12):1 498-1 506
- [9] Mohan P,Padmanabhan V N,Ramjee R. Nericell:Rich Monitoring of Road and Traffic Conditions Using Mobile Smartphones[C]. The 6th International Conference on Embedded Networked Sensor Systems(SenSys2008),ACM,Releigh,NC,USA,2008
- [10] Eriksson J,Girod L,Hull B,et al. The Pothole Patrol:Using a Mobile Sensor Network for Road Surface Monitoring[C]. The 6th International Conference on Mobile Systems,Applications,and Services(MobiSys2008),ACM,Breckenridge,Colorado,USA,2008
- [11]杨超.基于众包模式的城市级路面危害坑洞检测技术[D].上海:上海交通大学,2015
- [12]沈毅仁.基于Android手机传感器的车道检测设计与实现[D].南京:南京邮电大学,2018
- [13] Qin Z,Yu C,Li Q Q,et al. CrackTree:Automatic Crack Detection from Pavement Images[J]. Pattern Recognition Letters,2012,33(3):227-238
- [14]李荣,卢毅,宋萍.多功能路面状况检测技术的发展[J].测绘地理信息,2013,38(4):78-81
- [15]张德津,李清泉.公路路面快速检测技术发展综述[J].测绘地理信息,2015,40(1):1-8
- [16] Zhou B D,Yang J,LI Q Q. Smartphone-Based Activity Recognition for Indoor Localization Using a Convolutional Neural Network[J]. Sensors(Basel,Switzerland),2019,19(3):621-638
- [17] Cheng H T,Sun F T,Griss M,et al. NuActiv:Recognizing Unseen New Activities Using Semantic Attribute-Based Learning[C]. The 11th International Conference on Mobile Systems(MobiSys 2013),ACM,Taibei,China,2013
- [18] Karimi H A,Kasemsuppakorn P. Pedestrian Network Map Generation Approaches and Recommendation[J].International Journal of Geographical Information Science,2013,27(5):947-962