基于光谱与光合参量的油菜叶片总初级生产力反演Inversion of Rape Leaves Gross Primary Productivity Using Spectral & Photosynthetic Parameters
林志恒;邵佩佩;龚龑;
摘要(Abstract):
以“华油杂9号”油菜光谱反射率和光合参量数据为数据源,使用8种植被指数,分别建立VI、PAR_(in)×VI及PAR_(in)×VI×Cond 3类总初级生产力(gross primary productivity,GPP)反演模型,并验证精度,结果表明:(1)光合有效辐射和叶片气孔导度是影响油菜光合作用的重要因素,不考虑其影响仅使用植被指数反演油菜GPP效果不佳,模型R2均低于0.5。(2)结合入射光合有效辐射和叶片气孔导度两个光合参量构建的反演模型PAR_(in)×VI×Cond效果良好,模型平均R2均低于0.5。(2)结合入射光合有效辐射和叶片气孔导度两个光合参量构建的反演模型PAR_(in)×VI×Cond效果良好,模型平均R2高于0.89,平均RMSE(root mean squares error)不超过2.17 g·m2高于0.89,平均RMSE(root mean squares error)不超过2.17 g·m(-2),效果最佳的MTCI模型,其平均拟合优度R(-2),效果最佳的MTCI模型,其平均拟合优度R2可达0.91,RMSE为1.90 g·m2可达0.91,RMSE为1.90 g·m(-2),满足反演油菜叶片GPP精度要求。因此,基于光谱和光合参量的模型可以用于油菜叶片总初级生产力反演。
关键词(KeyWords): 总初级生产力;光谱反射率;植被指数;光合参量
基金项目(Foundation): 国家自然科学基金(41300048);; 国家重点研发计划(2013AA102401)
作者(Authors): 林志恒;邵佩佩;龚龑;
DOI: 10.14188/j.2095-6045.2020103
参考文献(References):
- [1]杜强,陈乔,杨锐.基于Logistic模型的中国各省碳排放预测[J].长江流域资源与环境,2013(2):143-151
- [2]佟磊.中国南早稻和北方冬小麦O3和CO2吸收通量观测和模型研究[D].北京:中国科学院大学,2011
- [3]刘宝升.基于MODIS和通量数据的玉米总初级生产力反演研究[D].杭州:电子科技大学,2013
- [4]陈雯,孙成明,刘涛,等.植被NPP估算的模型方法与机理[J].安徽农学通报,2014,20(8):30-33
- [5]史文娇,陶福禄,张朝.基于统计模型识别气候变化对农业产量贡献的研究进展[J].地理学报,2012,67(9):1 213-1 222
- [6]李兴东,宋永昌.浙江东部常绿阔叶林次生演替的随机过程模型[J].植物生态学报,1993,17(4):345-351
- [7] Monteith J L. Solar Radiation and Productivity in Tropical Ecosystems[J]. Journal of Applied Ecology,1972,9(3):747-766
- [8] Gitelson A A,Yi P,Arkebauer T J,et al. Relationships Between Gross Primary Production,Green LAI,and Canopy Chlorophyll Content in Maize:Implications for Remote Sensing of Primary Production[J]. Remote Sensing of Environment:An Interdisciplinary Journal,2014,144:65-72
- [9]赵育民,牛树奎,王军邦,等.植被光能利用率研究进展[J].生态学杂志,2007(9):1 471-1 477
- [10]柴如珲.基于高光谱数据的典型植被碳汇能力估计研究[D].武汉:武汉大学,2017
- [11] Rouse J W. Monitoring Vegetation Systems in the Great Plains with ERTS[J]. NASA Special Publication,1974,351:309
- [12] Jiang Z,Huete A R,Didan K,et al. Development of a Two-Band Enhanced Vegetation Index Without a Blue Band[J]. Remote Sensing of Environment,2008,112(10):3 833-3 845
- [13] Gitelson A A,Vi?aAndrés C V,Rundquist D C,et al.Remote Estimation of Canopy Chlorophyll Content in Crops[J]. Geophysical Research LettersJ,2005,32(8):403-406
- [14] Buschmann C,Nagel E. In Vivo Spectroscopy and Internal Optics of Leaves as Basis for Remote Sensing of Vegetation[J]. International Journal of Remote Sensing,1993,14(4):711-722
- [15] Gitelson A A,Merzlyak M N. Quantitative Estimation of Chlorophyll—A Using Reflectance Spectra:Experiments with Autumn Chestnut and Maple Leaves[J].Journal of Photochemistry&Photobiology B Biology,1994,22(3):247-252
- [16] Gitelson A A,Merzlyak M N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus Hippocastanum L and Acer Platanoides L Leaves Spectral Features and Relation to Chlorophyll Estimation[J]. Journal of Plant Physiology,1994,143(3):286-292
- [17] Dash J,Curran P J. The MERIS Terrestrial Chlorophyll Index[J]. International Journal of Remote Sensing,2004,25(23):5 403-5 413
- [18] Drew E A. Factors Affecting Photosynthesis and Its Seasonal Variation in the Seagrasses Cymodocea Nodosa(Ucria)Aschers,and Posidonia Oceanica(L)Delile in the Mediterranean[J]. Journal of Experimental Marine Biology&Ecology,1978,31(2):173-194
- [19] Farquhar G D,O′Leary M H,Berry J A. On the Relationship Between Carbon Isotope Discrimination and the Intercellular Carbon Dioxide Concentration in Leaves[J]. Australian Journal of Plant Physiol,1982,9(2):281-292
- [20]张佳华,符淙斌,王长耀.利用遥感信息研究区域冬小麦气孔导度的时空分布[J].气象学报,2000,58(3):347-353
- [21]姜闯道.植物叶片生长过程中光合活性、光保护机制及光系统Ⅱ热稳定性的研究[D].武汉:中国科学院植物研究所,2005