基于通道域注意力卷积神经网络的遥感影像高尔夫球场提取Golf Course Land Extraction Based on Channel Attention Convolution Neural Network
林超;
摘要(Abstract):
针对高尔夫球场目标大、场景复杂等引起的难以完整准确提取问题,构建了EfficientNetB3+UNet网络,引入通道域注意力模块,设计了大尺寸样本训练策略,并对模型进行了对比实验分析和应用。实验结果表明,所提方法的mIoU精度为0.948 7,明显高于非通道域注意力模型(mIoU为0.884 8)和小尺寸模型(mIoU为0.601 4),有效提升了高尔夫球场提取的完整性和准确性,显著降低了自然植被、水域等复杂内部场景和球场边缘混合场景等导致的漏提和误提现象。同时,在北京、上海、广州和深圳四地的高尔夫球场提取应用中,模型召回率均优于90%,具有良好的应用价值。
关键词(KeyWords): 高尔夫球场;卷积神经网络;通道域注意力;预测增强
基金项目(Foundation): 广东省自然资源厅2021年“十四五”基础测绘专项资金(广东省遥感影像管理及推广技术服务)
作者(Authors): 林超;
DOI: 10.14188/j.2095-6045.2022177
参考文献(References):
- [1]左昆,胥刚,李舟,等.我国高尔夫球场发展模式分析与预测[J].草业科学,2009,26(9):221-226
- [2]王勇,于信芳,庄大方.近30年北京市高尔夫球场时空变化特征[J].草业学报,2015,24(8):188-198
- [3]陈静波.基于中分辨率遥感影像的高尔夫球场识别关键技术研究[D].北京:中国科学院研究生院,2011
- [4]姚延娟,刘思含,高彦华,等.饮用水水源保护区高尔夫球场卫星遥感监察技术研究[J].环境与可持续发展,2016,41(6):52-56
- [5]刘媛,姚剑,冯辰.一种高效的高分辨率遥感影像飞机目标检测方法[J].测绘地理信息,2020,45(1):95-100
- [6] Mnih V,Hinton G E. Learning to Detect Roads in HighResolution Aerial Images[C]. 11th European Conference on Computer Vision,Heraklion,Crete,Greece,2010
- [7]张通,潘励.一种高分辨率遥感影像建筑物自动检测方法[J].测绘地理信息,2020,45(2):101-105
- [8]闫利,徐青,刘异.基于注意力网络的遥感影像植被提取方法[J].测绘地理信息,2021,46(S1):44-48
- [9] Xu Y Y,Wu L,Xie Z,et al. Building Extraction in very High Resolution Remote Sensing Imagery Using Deep Learning and Guided Filters[J]. Remote Sensing,2018,10(1):144
- [10] Yang H,Wu P,Yao X,et al. Building Extraction in very High Resolution Imagery by Dense-Attention Networks[J]. Remote Sensing,2018,10(11):1 768
- [11] Ronneberger O,Fischer P,Brox T. U-Net:Convolutional Networks for Biomedical Image Segmentation[C]. MICCAI 2015,Munich,Germany,2015
- [12] Tan M,Le Q V. EfficientNet:Rethinking Model Scaling for Convolutional Neural Networks[C]. International Conference on Machine Learning, Long Beach,California,USA,2019
- [13] Sudre C H, Li W Q, Vercauteren T,et al. Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations[C]. International Workshop on Multimodal Learning for Clinical Decision Support,QC, Canada, 2017
- [14] Lin T Y,Goyal P,Girshick R,et al. Focal Loss for Dense Object Detection[J]. IEEE Transactions on Pattern Analysis&Machine Intelligence,2017:2 999-3 007