基于高分辨率遥感的水源地风险源提取技术研究Research on Risk Source Extraction of Water Source Areas Based on High Resolution Remote Sensing
曹琪;郑雅兰;沈谦;汪闽;
摘要(Abstract):
风险源提取是实现饮用水源地遥感监测的重要技术环节。基于高分遥感的风险源提取的技术方法体系,研发了结合面向对象和深度学习技术的风险源提取方法并进行了软件实现。以图像分割为基础通过面向对象深度学习分类提取大尺度自然分险源,再利用语义分割提取各类人工分险源,实现了不同分险源的分级提取。依托相应软件系统,以高分二号影像为主要数据源,以南京市夹江水源地为示范区开展了风险源提取试验。结果表明系统实现了包括水源地水体分布,以及水体周边建筑物、道路、农、林等多类人工、自然风险源目标的准确提取。
关键词(KeyWords): 饮用水源地;风险源;面向对象图像分析;深度学习;语义分割
基金项目(Foundation): 国家重点研发计划(2017YFB0503902);; 国家自然科学基金(41671341);; 水污染控制与治理科技重大专项(2017ZX07302003)
作者(Authors): 曹琪;郑雅兰;沈谦;汪闽;
DOI: 10.14188/j.2095-6045.2020060
参考文献(References):
- [1]邱凉.城市水源地突发污染事故风险源项辨识与分析[J].人民长江,2008,39(23):19-20
- [2] Baatz M,Schape A. Multiresolution Segmentation:An Optimization Approach for High Quality MultiScale Image Segmentation[J]. Angewandte Geographische Informations Verarbeitung,2000(12):12-23
- [3]陈杰,邓敏,肖鹏峰,等.基于分水岭变换与空间聚类的高分辨率遥感影像面向对象分类[J].遥感技术与应用,2010,25(5):597-603
- [4]姚延娟,王雪蕾,吴传庆,等.饮用水源地非点源风险遥感提取及定量评估[J].环境科学研究,2013,26(12):1349-1355
- [5] Jyothi N B,Babu G R,Krishna V M I. Object Oriented and Multi-scale Image Analysis:Strengths,Weaknesses, Opportunities and Threats—A Review[J].Journal of Computer Science,2008,4(9):706-712
- [6] Ball J E,Anderson D T,Chan C S. A Comprehensive Survey of Deep Learning in Remote Sensing:Theories,Tools and Challenges for the Community[J].Journal of Applied Remote Sensing,2017,11(4):2 609-2 663
- [7] Girshick R,Donahue J,Darrell T,et al. RegionBased Convolutional Networks for Accurate Object Detection and Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016,38(1):142-158
- [8] Kussul N,Lavreniuk M,Skakun S,et al. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data[J]. IEEE Geoscience and Remote Sensing Letters,2017,14(5):778-782
- [9] Zhang Z,Liu Q,Wang Y. Road Extraction by Deep Residual U-Net[J]. IEEE Geoscience and Remote Sensing Letters,2018,15(5):749-753
- [10]崔卫红,熊宝玉,张丽瑶.多尺度全卷积神经网络建筑物提取[J].测绘学报,2019,48(5):597-608
- [11]季顺平,魏世清.遥感影像建筑物提取的卷积神经元网络与开源数据集方法[J].测绘学报,2019,48(4):448-459
- [12] Hu F,Xia G S,Hu J,et al. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery[J]. Remote Sensing,2015,7(11):14 680-14 707
- [13] Pan S J,Yang Q. A Survey on Transfer Learning[J].IEEE Transactions on Knowledge and Data Engineering,2010,22(10):1 345-1 359
- [14] Wang M,Wang J. A Region-Line Primitive Association Framework for Object-Based Remote Sensing Image Analysis[J]. Photogrammetric Engineering&Remote Sensing,2016,82(2):149-159
- [15] Wang M,Li R. Segmentation of High Spatial Resolution Remote Sensing Imagery Based on Hard-Boundary Constraint and Two-Stage Merging[J]. IEEE Transactions on Geoscience and Remote Sensing,2014,52(9):5 712-5 725
- [16]王永波.基于GF-1数据的南京夹江饮用水源地安全评价研究[D].南京:南京师范大学,2015
- [17]沈乐,龚来存,郭红丽.秦淮河入江段污染状况及其对长江污染的影响[J].水利经济,2012,30(6):51-54
- [18]周灵辉.长江南京段夹江水质保护的对策[J].污染防治技术,2005(3):26-28