基于全卷积编解码网络的视觉定位方法Visual Localization with a Fully Convolutional Encoder-Decoder Network
李晨旻;姚剑;龚烨;刘欣怡;
摘要(Abstract):
针对目前视觉定位方法中使用人工特征的限制,提出了一种基于全卷积编解码网络的视觉定位方法。该方法将场景点3D坐标映射到图像的BGR(blue-green-red)通道,建立了图像到场景的直接联系,并通过全卷积编解码网络学习图像与场景结构的关系。给出一张图像,网络可以预测其每个像素点对应的3D点在当前场景世界坐标系的坐标;然后结合RANSAC(random sample consensus)和PnP(perspective-n-point)算法求解位姿并优化,得到最终的相对位姿。在7-Scenes数据集上的实验结果表明本文方法可实现厘米级的高精度定位,并且相比其他基于深度学习的方法,该方法在保证精度的同时,模型尺寸更小。
关键词(KeyWords): 视觉定位;场景构建;姿态估计;深度学习
基金项目(Foundation): 国家自然科学基金(41571436)
作者(Authors): 李晨旻;姚剑;龚烨;刘欣怡;
DOI: 10.14188/j.2095-6045.2020072
参考文献(References):
- [1]吴毅红.基于图像的相机定位技术综述[J].人工智能,2019(2):50-64
- [2] Schindler G,Brown M,Szeliski R. City-Scale Location Recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN,USA,2007
- [3] Arandjelovic R,Gronat P,Torii A,et al. NetVLAD:CNN Architecture for Weakly Supervised Place Recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,NV,USA,2016
- [4] Sattler T,Leibe B,Kobbelt L. Efficient&Effective Prioritized Matching for Large-Scale Image-Based Localization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,39(9):1 744-1 756
- [5]朱永丰,朱述龙,张静静,等.基于ORB特征的单目视觉定位算法研究[J].计算机科学,2016,43(S1):198-202
- [6]涂金戈,谢仁平,赵鹏程.一种双目直接法视觉里程计[J].测绘地理信息,2020,45(2):111-115
- [7] Kendall A,Grimes M,Cipolla R. Posenet:A Convolutional Network for Real-Time 6-Dof Camera Relocalization[C]. IEEE International Conference on Computer Vision,Santiago,Chile,2015
- [8] Li X T,Ylioinas J,Kannala J. Full-Frame Scene Coordinate Regression for Image-Based Localization[C].Robotics:Science and Systems Conference, Pittsburgh,USA,2018
- [9] Brachmann E,Krull A,Nowozin S,et al. Dsac-Differentiable Ransac for Camera Localization[C]. IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,HI,USA,2017
- [10] Brachmann E,Rother C. Learning Less is More-6D Camera Localization via 3D Surface Regression[C].IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake City,UT,USA,2018
- [11] Shotton J,Glocker B,Zach C,et al. Scene Coordinate Regression Forests for Camera Relocalization in RGB-D Images[C]. IEEE Conference on Computer Vision and Pattern Recognition,Portland,OR,USA,2013